Statistical Feature Ranking and Fuzzy Supervised Learning Approach in Modeling Regional Rainfall Prediction Systems
نویسندگان
چکیده
Rainfall prediction is an essential and challenging task in hydro-meteorology. Most of the existing weather dataset used for prediction consists of observatory record of several atmospheric parameters. Identifying the significant parameters from irrelevant and redundant parameter set for weather prediction is important because irrelevant parameters may decrease the prediction accuracy. The main intent of this research is to identify the influencing weather parameters for improving daily rainfall forecast efficiency. A parameter selection module identifies the significant parameter based on information gain based feature ranking. Fuzzy supervised learning module evaluates the performance of fuzzy classifiers before and after parameter selection. In the evaluation phase, learning techniques was analyzed in terms of Accuracy Rate (AcR), Root Mean Squared Error (RMSE) and Misclassification Rate (McR). Experimental results revealed that, parameter subset selection has significantly improved the performance of the learning techniques. The investigation results identified minimum temperature, relative humidity and evapotranspiration as influencing weather parameters for rainfall prediction. Empirical results revealed Fuzzy Unordered Rule Induction Algorithm (FURIA) as a suitable rainfall prediction approach. This fuzzy model achieved an enhanced accuracy rate of 84.10% after parameter selection with nominal misclassification rate of 0.1590%.
منابع مشابه
Ranking Effective Bases on Performance of Human Resource Planning Systems (Correlation and Fuzzy Approach)
EnThe present research studied the relationship between organizational learning elements and human resources performance. Population of the research consisted of all managers Tehran Telecommunication Company. Data were collected through questionnaires which included 24 questions with seven items. To determine the impact and ranking theprinciples of organizational learning in performance of huma...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملIn silico prediction of noncoding RNAs using supervised learning and feature ranking methods
We propose here a new approach for ncRNA prediction. Our approach selects features derived from RNA folding programs and ranks these features using a class separation method that measures the ability of the features to differentiate between positive and negative classes. The target feature set comprising top-ranked features is then used to construct several classifiers with different supervised...
متن کاملIntelligent decision support system based on rough set and fuzzy logic approach for efficacious precipitation forecast
Article history: Received February 25, 2016 Received in revised format: March 28, 2016 Accepted June 26, 2016 Available online June 26 2016 Weather forecasting is essential and demanding scientific task of meteorological services across the world. It is a complex procedure that includes many specific technological field of study. The prediction is intricate process in meteorology because all de...
متن کاملApplication of Grey System Theory in Rainfall Estimation
Considering the fact that Iran is situated in an arid and semi-arid region, rainfall prediction for the management of water resources is very important and necessary. Researchers have proposed various prediction methods that have been utilized in such areas as water and meteorology, especially water resources management. The present study aimed at predicting rainfall amounts using Grey Predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017